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SUMMARY

A theoretical and experimental ihvesttgation has been
made of the behavior of a cantilever beam in transverse
motion with a mass at its tip when the root is suddenly
brought to rest. Equations are given for determining the
stresses, the deflections, and the accelerations that ar5.se
in tfi.ebeam as a result of the impact. ‘The theoretical
equations , which have been confirmed experimentally, reveal
that for a beam with a given cross section and velocity at
impact and for a given ratio of tip mass to beam mass, the
bending stresses for a particular mode at a given percentage
of the distance from root to tip are independent of the
length of the beam; whereas, the shear stresses vary
inversely with the length.

The addizion of a mass to the tip of a cantilever
beam increases appreciably the stresses produced by the
first mode of vibration but changes only slightly the
stresses contributed by the higher modes. The tip mass
increases the maximum bending stress much less than might
be expected on the basis of experience with the static
acltion of structures. For practical engineering analysis
tie maximum bending stress developed in a suddenly arrested
cantilever beam can be found by a simple addition of
stress amplitudes in the first few modes without regard
to phase relations between modes.



2 L“R No. L4K3o

TNTR_ODUCTION

Iflhenan airplane lands , the vertical component of’
the velocity ts rapidly ~’educed to zero. The shock of
the sudden change in motion gives rise to vibratory
stresses in the airplane. As a beginning in the study
of these stresses a previous report (reference 1) dis-
cussed in detail the behavior of a cantilever beam in
translational motion when its root is suddenly brought
to rest. In that paper equations are given for deter-
mining the stresses$ the deflections, and the accelera-
tions that arise throughout the beam as a result of the
impact . The present report extends the basic problem of
reference 1 to include the effect of a concentrated mass
at the tip of the cantilever beam.

As in reference 1, the present paper is based on the
usual engineering beam theory. In this theory the
deflections are considered to be the result of bending
alone, shear deflections neglected. The theory as applied
to ordtna~y beams gives i-easonably good results so long
as the distance between inflection points is greater than
a few times the depth of the beam. When this theory for
beam action is used in vibration problsrn.s, such as that
in the present paper, the results are satjsf’actory for
those modes of vibration for which the nodes are not too
close together.

Thfi.sreport summarizes the results of a theoretical
solution gl~en in appendix. A and presents an experimental
verification of these results. A numerical example for
the calculation of the maximum stresses near the root of
the cantilever beam is given in appendix B.

SYM30LS

E modulus of elasticity

Y weight density of material

A coefficient
material

c velocity of

of equivalent viscous damping of

Fg
sound in material

( Y
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P

n
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n

r

Wn

Wn t

acceleration of gravity

length of beam

moment of inertia of cross section of beam about
neutral axis

cross-sectional area of beam

radius of gyration of cross section of beam
()

F
i x

coordinate along beam measured from root

distance from neutral axis of beam to any fiber

time, zero at impact

booerator —
at

integers 1, 2, 3, etc., designating a particular
mode of vibration

nth positive root of equation 1 + cos 0 cosh 0
+rO ~sinh ecos 9- cosh f3sin 9) =0

ratio of tip mass to beam mass #

undamped natural angular frequency of nth mode,

( -)

en2
radians per second PC

L2

damped natural angular frequency of nth mode,

radians per second {n{~-

(’ )L2wn2
where

\
4E2

>1, the ~lfrequencyll is defined

v velocity of beam prior to impact
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W(x,t) deflection of beam at station x aild tia]e t

wn(x, t) deflection of beam. at station x and time t
for the nth mode of vibration

a(x, t) accsl-erat~ on of beam at station x and tire t

an(x, t) acceleration, of beam at st~.tion x and time t
for nth made of vibration

O(x, y,t) bending stress in bea~l at scati on x, distance
from neutral axis y, and tj.me t

an(x, y,t) bending stress in beam at station x, distance
from neutral axis y, and time t for nth mode
of vibration

T(x, t) average shear stress over cross section of beam
at station x and time t

~n(x,t) average shear stress over cross section of beam
at station x and time t for nth mode of
vibration

An bending-stress coefficient for nth mode of
vibration

13n shear-stress coefficient for nth mode of vibration

Cn deflection coefficient for nth mode of vibration

RESULT’S AND CONCLUSIONS

Theoretical

When a cantilever beam with a mass at its tip is under
uniform translation in a direction perpendicular to its
length there is excited a theoretically infinite number
of modes of vibration when its root is instantaneously
brought to rest. With each successive mode, dampilig has
an increasing influence upon the frequencies and amplitudes
of vibration and, for sufficiently high modes, even changes
the type of motion from oscillatory to nonoscillatory
motion. In the lower modes, however, damping has little
effect and only terms of the first order in damping need
be included in the equations. Only the equations applicable
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.to the lower modes, which alone are of importance in any
-practical casez are presented in this section of the
paper. For a more complete treatment of damping, see
appendix A.

The angular frequencies (2TT times the frequencies
in cps) are given by the equation

end
‘n =pc—

.2 (u
L1

where 6n is the nth positive root of the equation

1 + CC)S 8 cosh 0 + P9 (sinh @ cos 8 - cosh f3 sin. 8)=0 ‘- (2)

In this equation r is the ratio of the tip mass to the
mass of the beam. The values of en for the first three
modes are given in the following table for several values
of r:

*

1.5758 4.2250

1.42oo ~..1105

1.3202 4.0602

I-.2L17
?

4.0311
1,077

ii

3.9826
.917 3.9557
.832 3.9460

‘3
7.8548

7.2813

7.1904

7.1539

7.1339
7.1026
7.0959
7.0802

Figure 1 shows graphically the variation of Eln with the
mass ratio r for n = 1, 2, and 3. For each value of
n the value of (3n, and consequently the frequency,
decreases with increasing values of the mass ratio r.
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Expressions for the bending stresses, shear stresses,
deflections, and accelerations are the same as the ex.pres-
si.ons given in reference 1 for these quantities except
that the coefficients An, %, al~~-Cn, wb.ich characterize
each mode, are functions of en additional variable r,
the mass ratio. The bending stress, average shear stress,
and deflection are, respectively for the nth mode of
vibration:

Au 2
-At

Qx,y,t) = ~~~Ee 2E sinwnt (3)

(4-)

h(l)d
2 ‘t-——

VL
Wn(x,t) = Cn –— 2E

cFe
sin w

nt (5)

The acceleration for the nth mode, when damping is suffi-
ciently small, is

~(x, t) = -@n2 Wn(x, t) (6)

The variation of the dimensionless coefficients An,
~, and Cn with position alcng the beam.
in figures 2,

x/L is given
3, and ~~ respectively, for the first three

modes$ n = 1, 2, and j and for values of r from O to 6.
Figures 2 and 3 indicate that for all values of the mass
ratio r the highest values of An and B,l and hence the

highest stresses occur at the root of the beam. Thes e
highest, or root values of An and ~ are shown for
r = O and r = 6 in figure 5 for the first 5 modes. Root
values of An and ~ for mass ratios between o and 6 are

given in figure 6 for the first 3 modes. Both figures 5
and 6 show that the addition of a mass at the tip of the
beam (r > O) increases appreciably the values of the stress
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coeffi cl ents An and ~1 for the first mode (n = 1) but

Has a very small effect upon these coefficients for the “
second and higher modes.

The tip mass increases the maxi:mum bending stress
much less than might be expected on the: bas~s. of stattc
considerations. For example the addition of a tip mass
6 times the mass of the beam increases the mass moment
about the root 1200 ~ercent whereas the first mode
bending stress coefficient Al is increased only 184.per-

~66 to 4.450). (See- fig. ~.)cent (from 1.,
.

~ The maxim~’values with respect Lo time of ~m(x,y,t)
and ~n(x,t) associated with the nth mode of vibra~ion,

when the effects of damping are neglected, “are

7n(x)=Bn$f E.

(7)

(8)

Equations (3) and (4.) for bending and shear stress,
from which equatims (7) and (8) are obtained, and equa-
tions(r) and (6) for deflections and accelerations give
the values associated with the nth mode of vibration.
Since all modes of vibration occur simultaneously the net
results are the superposition of the effects of all rpodes.

: This superposition gives the following equations:
~
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For average shear stress,

Amlz-—
+B2e 2E t

)
sin W2 t+... (lo)

For deflection,

( LW12

VL 2 ..— t
W(x, t) = ; ~ Cl e 2E sin @It

~w22

-— t
+C2e2E

)
sin02 t+.,. (11)

For acceleration, when damping is sufficiently small,

( AW12

VL 2 -— t
a(x, t)=-:~ C1W12e 2E sin WIt

Aw 2
h

2-2E
+C2@2 e

)
sin Q)2t+ o.. (12)

For a beam with a given cross section and velocity
at impact, the equations for bending stress reveal that
at a given percentage of the distance from root to tip
and for a given mass ratio, the bending stress for a
particular mode is independent of the length of the beam.
The equations for shear stress reveal that the shear
stress at any station varies inversely with the length
of the beam.
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Experiw.ental

‘The apparatus which was used to provide for the
instantaneous ai-rest of a cantilever beam. is shown in
figure 70 In this apparatus two cantilever beams are
formed by centrally clamping a steel tube in a heavy split
block. The block is attached to a carriage which is
permitted to run with known velocity over a horizontal
track. The carriage is accelerated by a weight acted
upon by gravity in the initial portion of the run and is
kept in a state of unfl.form translation by an additional
sr,all weight used to overcome friction in the latter
portion of the run. Instal~taneous arrest is achieved
by permitting a tapered plug projecting from the
carriage to ram into a fixed chuck. The effect of a tip
mass was studied by increasing the wetghts on the tips
of the beams in successive tests. The velocity at impact
and the dimensions of the cantilever beams are given in
apuendix B.

The apparatus described herein provides for a much
more rigid clamping of the tube and gives a better control
over the instantaneous arrest than the apparatus described
in reference 1. l.~iththe more rigid clamping, 163SS

oscillatory energy was lost by the cantilever beams to
adjacent parts of the apparatus. The damping present,
therefore, more nearly approached the damping of the
material of the beam.

Extreme fiber bending stresses near the root of each
cantilever beam were measured by mleans of electrical
strain gages and a recording oscillograph as described
in reference 1. A typical record of the bending strains
at the roots of the two cantilever beams with the mass

ratio r = —
:

is shown in figure 8. No measurements were

made of the shear stresses since their values were too
small to be measured accurately in the presence of the
vibrations set up by the rolling of the carriage.

The three quantities that were obtained from the
b tests - the frequencies of the first three modes, the

maximum contribution of the first mode to the total
extreme fiber bending stress at the root, and the
maximum extreme fiber bending stress at the root -
are plotted against the mass ratio r in figures 9
and 10 for comparison with the theoretically computed
values . Since inherent local variations in the beam
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properties do not appreciably affect the frequencies,
which are associated with the over-all act:on of the
“oeam~ and since frequencies are easy to measure, it is
reasonable to expect the observed good agreement between
theoretical and experimental freq~~encies, (See fig. 9.)
‘Nhen consideration is givei~ to the fact that stresses are
directly affected by the local variations i.n the beam
prope~ties and are not read<.ly susceptible to instantaneous
accurate measurement the observed agreement between the
experimental and theoretical stresses j.s also considered
to be satisfactory. (See f’ig. 10.)

The contribution of tile first mode to the total
stress was estimated 17rorrthe records. (See fig. 8. )
It is clear from fig-ore 10 that the first mode contributes
more than half of the total stress. It is also clear from
figure 10 that for practical engineering analysis the
maximum bending stress developed in a suddenly arrested
cantilever beam ca~~ be found by a si-mple addition of
stress amplitudes in the first few modes (In this case ~)
without regard to phase relations between the modes.

Langley Memorial Aeronautical Laboratory
ITational Advisory Committee for Aeronautics

Langley Field, Va. , h?ovember ~0, lq~.~
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APPENDIX A
--

THEORETICAL DERIVATION

i,.?1,

!$
General analysis. -\ Consider in equilibrium a uniform

cantilever beam with a mass at its free end. If the root
..;.,
i

of the beam is suddenly disturbed, as by a shock, in a
J direction perpendicular to its length, the beam will be
J set into damped bending oscillations. The equation of
/ motion for these bending oscillations is given by the
I differential equation (reference 1)

(Al)

l~ith the use of’ the notation ~2 .=

‘Y
equation (Al) may

be written

This partial differential equation is reduced to an
ordinary differential equation of the 4th order by

writing p ~ $- ; thus,

(A3)

The general

w = P cosh

solution of equation (A3) is
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r i-rl@=jj —.—

r ——
~PC ~, 1-+P:

The coei’fici.ents P, Q, R, and S are t o be determined
from the boundary condj tioils. ‘The case under considera-
tion is that of a cantilever with a mass at its free end
moving with un!. form veloclty v and having i ts root
brought insta]2taneously to ~,est. The boundary conditions
f’cr this care are

()aw~- = p(w)x=o = v - VI
X=o

The fourth boundary condition, wh!ch is an applica-
tion of Newton? s third law, equates the shear force at
the tip of the beam to the inert~.a force of’ the tip mass.
The velocity of the root as given by the first boundary
condition 4.s represented graphically In figure 11.
Tollowing the procedure adopted in reference 15 the
solution will be obta~ned for the boundary condition

and to the resulting velocity will be added the constant
velocity v.
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l~~ith the
equation (~ )
(that induced

13

application of the boundary conditions to
the operational solution for the velocity

‘by -vd ) is found to be

- Vf f(e;)
pw = ———— —— — —.— _,\

2 l+ cos8cosh0+r0(sinh ecos 0-cosh9sin6))

( x\
+ sin ~ Sinhe Cosh 8: - cos (j- )

L,

(+ (sinh 6 cos 8 + cosh 8 sin 0) sin 0~- sinh O?
)

[
+ 2r0 sinh 0 cos e coslle~ - cosh e sin e cos et ,

—

(+COS e c05h e sin E$- -
‘i* H A

l’+ Tip massand r Is the ratio ~ = ——— Interpretation of
Beam mass “

this operational expression and addition of the con-

stant velocity v gives for the total velocity

II
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where

‘9* nth positive root of’ the frequency equation

1 + cose8mh0+ r8(sinhf3cos 9- cosh~sin 0)= O
(all rocts, namely *9a, fi~n, have been considered

in the interpretation)

Q2

(J+i = pc -—Q— undamped natural frequency cf nth mode,
L2 radi ans\sec

r—-——~k2u 2

Wn t r.

/
‘wn\l” — dam’~ec?natui,al angular frequency

432 of nth mode, radians/see

(, (1 + Cos all (COSh 8n) cosh on ;
x+ Cos en: )

I (
x .

+ sin en sinh en c~sh Q - --Cos en ;
1 \ nl )

1

1+ (sinh 9n cos en +
( )

?cosh On sin On) sin On ~-sinh On ~

r. x
+ 2r0n ~lnh On cos CJncosh f3n~ - cosh @n sin On Cos 8n~

Integration of equation fA6) with respect to time with
the condition (w)t=~ = O gives for t,he deflection

when t>o

v L2_—=
CP Cn

1

r-A2#/l-—–

11E2

?onz--
e

2E
t
sin @nl tl (A7)
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where

c-n –

The contr~bution of the nth rode to the deflection
is

)LO-J
2VL 1

..—
Wn(x, t) = — — CIl-—”-—’ 2E t

CP / ?7tiaz e
sln Mnl t< (A8)

\/
l-——

4E2

A(J)*
When — > 1 equation (A8) may be put in the form

2E

?W112
VL 2 1 “-Z-

t
— .—wll(x,t) = ~ ~ Cn ——= e

r

sinh Wnitl (A?)
~2mn2
—— - 1

4E2

where now

k)
The form indicated by equation (A8), where ~<1, is

characteristic of the lower modes and represents damped

OscillT:r~ ‘notion”
The form indicated by equation (A9),

where —2+ > 1 (damping greater than critical) , is

characteristic of the higher modes and represents sub-
sidence motion.

From equation (A6) for the velocity and equat5.on (A7)
for the deflection, the complete behavior of the cantilever
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may be deterr.ined. The quantities of interest are the
bending stresses, the shear stresses, and to some extent
t]le accelerations. Where damping is present, the equa-
t%ons ~epresen.ting the contribution of the nih mode to
these quantities my be given in ‘he two forms indicated
by eql~ations (Au) and ~A~). In subsequelit equ.at:ons$
hov,ever, oni~? the term. irtdicated “uy (Au) is Civen, because
it is characteristic of the modes whigh are of practic~l
importance.

where

j

(-(sinh 6n cos @n + cosh en sin en) sinh Clnf + sin Qn f
))

[
+ 2rf& sinh 9n cos 9n cosh 9n-~+- cosh On sin Qn Cos On ~1

1-
1

(cos Elm cosh @n .sinh811f
x
y+ sin en ~,.. J

An ——-— ---————’———”— —
Cos en 1=20J(l+r)(sinhen-cosh 9n singn) -2r(3nsin Elnsinhea

The contribution to bending stress of the nth mode is

T7~
~ll(xjyjt) = E c p An

Average shear stresses.-—.— —
on th= cross section is

The average shear stress
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kl)n~
t

2b3w=Ev P
r

.—

T(x,.t) = EP —
:Z En e 2E

~X3
sin wn~ t J

n= 1

where

[ ,-

(1 + Cos en
(

cosh en) sinh en ; + sin e xn~ )

(
+ sin en sinh Qn sinh en f-- sin.en ~

)e

(
-(sinhen cosf3n + cosh On sin en) cosh Elnf+ cos On ~

!

)

+ 2rFln
[
sinh en cos en sinh ,gn$ - cosh en sin Elnsin Eln~

COS (jn cosh on cosh on ~ + COS (3
x

n~
~=p - J

(1 + r) (sinh 13n cos On - cosh en sin f3n)- 2r6n sin (jn sinh f3n

The contribution to average shear stress of the nth
mode is

Accelerations .- From equation (A6), with the aid of.—.—
the relation

pF(t)l = F(0)PI + Ff(t)~

the acceleration anywhere on the beam is found to be
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a(x, t) =

I

L1
1-.

2EL

).I E2

7 2
A w

----Q--t
e 2E

[

sin Wnf t

i

With the atd of the orthogonal properties of the func-

tions
()

x
‘“n~ it is possible to show that the quantity

2~F@n~)-1 reduces to zero when O < ~ S 1.

n= 1
L

m

At E eqllal

and only the

that at t =
tion of zero

to zero the

term -Vpi

O there is
durat ion.

The contribution to

~
quantity

()2&-F er’t
is zero

rl=l

remains s This term. indicates

at the root an infinite accelera -

acceleration of tlhe ntlh mode is

+

-

4E2

Cos w f
n

/
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Comparison with the expression for wn(x~t) (equation (A8))
shows that the acceleration of each mode is out of phase
with the deflection. 1~.hendamping is sufficiently small,
however, the relation between the acceleration and the
deflection reduces to the well known result for undamped
vibration

an(x,t) = -mn2 wn(x,t)



20

APPEND1 X B

NUUIPri cal Example
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Problem, - TO calculate the tl~eoreLical bending ai?d.——. —
shear stress at the position of’ strain cages on the steel
tube beam used in the experimental investigation of the
present pape~’ for a mass at the iip equal to the mass of
the beam, r = 1.

~~n~t~ of bea~:, L)5n. . . . . . . . . . . . . . . ~90~~
Outside CHarnet.er of tube, in. . . . . , . . . . . l.00~
Distance to sxtreti~e fi7~er, maximum. value

ofy,in. . ● . . . . . 0 ● . . . . . . . . .0.502
‘Wall th!ekness of tube, in. . . . . . . . . . . . 0.0~9
Radius of gyration of ~iaoss section, F, in. . . . 0.3,4.5
Distance f’ro.wro~t of bemm to strain

~ages, x,in. . . . . . . . . . . . . . . . , , 0.50
I!odulus of elasticl.ty, E (assumed), psi . . . . 29x106
Velocity at impact, v; fps . .
Velocity of sound in steel, c,

The effects of dam~in~ will be
tions (7) and (8)
of this problem

. . . . . . . . . . l.~ti
fps . . . . . . . 16,600

ne~lected so that equa -
Frcnn the fore~oing data

psi

The values of’ An and ~ for the different mgd.es are
obta~.ned f’ro~~figures 2 and ~ for r = 1 and Q = 0.0167.L
The computed stresses are given in the following table

— -—.- .—l -——, -, mm, ,,, ,, ,,
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Sum of first three 15,9’70 373
stress ampli tudes

.—. —--——. ——

An approximation of the maximum total stresses can be
obtained by adding the stress amplitudes for the first
several modes as indicated.
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